Modeling the melting of multicomponent systems: the case of MgSiO3 perovskite under lower mantle conditions

نویسندگان

  • Cono Di Paola
  • John P. Brodholt
چکیده

Knowledge of the melting properties of materials, especially at extreme pressure conditions, represents a long-standing scientific challenge. For instance, there is currently considerable uncertainty over the melting temperatures of the high-pressure mantle mineral, bridgmanite (MgSiO3-perovskite), with current estimates of the melting T at the base of the mantle ranging from 4800 K to 8000 K. The difficulty with experimentally measuring high pressure melting temperatures has motivated the use of ab initio methods, however, melting is a complex multi-scale phenomenon and the timescale for melting can be prohibitively long. Here we show that a combination of empirical and ab-initio molecular dynamics calculations can be used to successfully predict the melting point of multicomponent systems, such as MgSiO3 perovskite. We predict the correct low-pressure melting T, and at high-pressure we show that the melting temperature is only 5000 K at 120 GPa, a value lower than nearly all previous estimates. In addition, we believe that this strategy is of general applicability and therefore suitable for any system under physical conditions where simpler models fail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melting phase relations in the MgSiO3–CaSiO3 system at 24 GPa

The Earth’s lower mantle is composed of bridgmanite, ferropericlase, and CaSiO3-rich perovskite. The melting phase relations between each component are key to understanding the melting of the Earth’s lower mantle and the crystallization of the deep magma ocean. In this study, melting phase relations in the MgSiO3–CaSiO3 system were investigated at 24 GPa using a multi-anvil apparatus. The eutec...

متن کامل

Ab initio elasticity and thermal equation of state of MgSiO3 perovskite

We have used high-temperature ab initio molecular dynamic simulations to study the equation of state of orthorhombic MgSiO3 perovskite under lower mantle pressure^temperature conditions. We have determined the Gru«neisen parameter, Q, as a function of volume. Our state-of-the-art simulations, accurate to within 10%, resolve the long-standing controversy on thermal expansion (K) and Gru«neisen p...

متن کامل

Molecular dynamics simulation of phase transitions and melting in MgSiO3with the perovskite structure

The high pressure phase transitions and melting of the mantle mineral MgSiO3 with the perovskite structure were investigated using molecular dynamics (MD) simulations of a large system of atoms on a parallel computer. The simulations reveal an orthorhombic to cubic transition accompanied by a sharp increase in diffusion of the O atoms. The phase transition and melting temperature depend sensiti...

متن کامل

Self-consistent thermodynamic description of silicate liquids, with application to shock melting of MgO periclase and MgSiO3 perovskite

S U M M A R Y We develop a self-consistent thermodynamic description of silicate liquids applicable across the entire mantle pressure and temperature regime. The description combines the finite strain free energy expansion with an account of the temperature dependence of liquid properties into a single fundamental relation, while honouring the expected limiting behaviour at large volume and hig...

متن کامل

Sound velocities and elasticity of aluminous MgSiO3 perovskite: Implications for aluminum heterogeneity in Earth’s lower mantle

[1] Aluminum has been reported to have a remarkably strong effect on the thermoelastic properties of MgSiO3 perovskite. However, the sound velocities of aluminous MgSiO3 perovskite have not been previously measured, even though this phase likely dominates most of the chemistry in Earth’s lower mantle. Here we report the first sound velocity measurements on aluminous MgSiO3 perovskite using Bril...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016